Secondary Science PGCE at the University of Roehampton

Useful information to build your pedagogical content knowledge before starting the course

Congratulations on your offer to study PGCE Science at Roehampton. We very much look forward to welcoming you in September on what will be an exciting and busy year. If you have any questions, please feel free to contact the subject tutors: steve.abrams@roehampton.ac.uk Nicklas.lindstrom@roehampton.ac.uk

Use your subject knowledge audit (completed prior to interview but a blank one is attached here) to help you identify key and address key gaps in order to get ready for the course. Here are some suggestions:

- Look at the national curriculum KS2, 3 and 4 across the science to get a better idea of what you will be teaching: <u>https://www.gov.uk/government/publications/national-curriculum-in-england-science-programmes-of-</u> <u>study/national-curriculum-in-england-science-programmes-of-study</u>
- 2. Use these online resources to revisit, revise key and test yourself: <u>https://mathsmadeeasy.co.uk/gcse-science-revision/</u> <u>https://app.senecalearning.com/courses?Price=Free&text=science</u>
- Familiarise yourself with the latest science exam board specs and past papers: AQA GCSE and A level: <u>https://www.aqa.org.uk/subjects/science</u> Edexcel: <u>https://qualifications.pearson.com/en/qualifications/edexcel-gcses/sciences-2016.html</u>
- Visit the professional association for your specialism to find out the latest news and resources: <u>https://www.rsb.org.uk/</u> <u>https://www.rsc.org/</u> <u>https://www.iop.org/</u>
- 5. Listen to some science podcasts such as the infinite monkey cage or others here: <u>http://www.bbc.co.uk/podcasts/category/scienceandnature</u>
- 6. Build your awareness of science current affairs by reading online magazines such as: https://www.science.org/
- 7. Watch and evaluate some remote teaching of science lessons from the Oak National Academy website: <u>https://www.thenational.academy/</u>

Science Pre-Course Reading

Read the highlighted texts and in addition choose one or two from each list. A wider reading list will be provided once the course begins. All these works are available on Amazon and/or in the library at Roehampton. There will be a library orientation tour towards the start of the course to familiarise you with the facilities and services available.

Subject knowledge:

Bryson, B. (2004) A Short History of Nearly Everything, London, Black Swan

Bryson, B. (2019) The Body: A Guide for Occupants, London, Doubleday

Dawkins, R. (ed) (2008) The Oxford Book of Modern Science Writing, Oxford, OUP

Driver, R. (1989) Students' conceptions and the learning of science, *International Journal of Science Education*, 11(5), 481-490

Goldacre, B. (2008) Bad Science, London, Fourth Estate

Gribbin, J. (2002) Science a History, London, Penguin

McComas, W. (2017) Understanding how science work: The nature of science as they foundation for science teaching and learning, *School Science Review,* 98(365) 71-76

Podcast: Infinite Monkey Cage - What makes science a science? https://www.bbc.co.uk/programmes/b036twt5

Teaching and learning:

Cullingford, C. (2010) The Art of Teaching, Abingdon, Routledge

Dweck, C. (2012) Mindset: How you can fulfil your potential London, Robinson

James, G. (2016) Transforming Behaviour in the Classroom, London, Sage

Harlen, W (2010 and 2015) *Principles and big ideas of science education*: <u>https://www.ase.org.uk/bigideas</u>

Toplis, R (2015) Learning to teach science in the secondary school London, Routledge

William, D. (2011) Embedded formative assessment Bloomington: Solution Tree

Willingham, D. (2010) Why don't students like school? London, Jossey Bass

Wright, T. (2008) How to be a Brilliant Trainee Teacher Abingdon, Routledge

Science Subject Knowledge Audit

Name:

You will use this form throughout the PGCE course as you develop your subject and pedagogical knowledge.

Торіс	At what level and where did you study this topic	
		Tick if additional work required
Biology		
Using a light microscope to observe cells and the role played by the electron microscope		
Cell structures in both animal and plant cells		
Role of diffusion, osmosis and active transport in cell biology		
Hierarchical organisation of multicellular organisms		
Biomechanics and muscle structure and function		

Skelton and functions of bone	
Balanced diet and consequences of poor diet	
Tissues, organs and function of the human digestive system	

Enzymes as biological catalysts Understand the kinetics and rate calculations of enzyme reactions	
Plant nutrition	
Photosynthesis – to include its role in atmosphere composition and adaptations in plants to facilitate it. Understand the role of limiting factors in determining the rate of photosynthesis and the process of transpiration.	
Human reproduction (including reproductive systems, hormonal control of	

the menstrual cycle, gametes, fertilisation, gestation & birth)	
Plant reproduction (including pollination, fertilisation, dispersal and germination). Plant structure including xylem and phloem. Understanding of plant hormones	
Effects of recreational drugs	
Aerobic and anaerobic	
respiration in multi-cellular	
organisms	
Fermentation in microorganisms	

Interdependence or organisms in ecosystems, the importance of biodiversity and biological factors affecting food security.	
Importance of insect pollination to food security	
The work of Watson, Crick. Wilkins and Franklin on DNA	

structure. The role played by DNA in protein synthesis.	
Simple heredity including	
mitosis and meiosis, the work of	
Mendel, genetic disorders and	
the Human Genome	
Project	
The significance of differences between specifies and within species	
The work of Darwin and Wallace and natural selection, including and understanding of human evolution	
The significance of biodiversity and how our understanding of genetics has led to the suggestions of three domains rather than the five kingdoms	
Demonstrate an understanding of the relationships between quantitative units in relation to cells, including milli (10 -3),	

micro(10 -4) , nano (10 -5) and pico(10 -6)	
Explain structure and function of nervous system including reflex arc. and the eye	
An understanding of the basics of genetic engineering and the role played by GM organisms	
To understand the principles of health, disease (in humans and plants) and the development of medicines	
Describe the production and use of monoclonal antibodies.	
Have a good understanding of animal coordination, control and homeostasis including the principal human hormones.	
The water, carbon, nitrogen cycles.	

Chemistry	
Explanations of changes in states of matter using the particle model	
The Dalton atomic model	

Chemical symbols and formulae	
for elements and compounds	
Transition metals and alloys	
Techniques for separating	
mixtures.	
Methods of purification	
Representing chemical	
reactions using formulae and	
_	
equations	
Overarching concepts of	
chemistry types of Bonding	
Combustion, thermal	
decomposition, oxidation &	
displacement reactions	
Dynamic Equilibria and	
calculations involving gases	

Chemistry of acids and alkalis	
including the properties of	
metal and nonmetal oxides	
Quantitative Analysis :tests for ions	
Catalysts	
Rates of Reaction.	
Energetics in chemical reactions	
Heat energy changes /Fuels	

The development of use of the	
Mendeleev Periodic Table	
Groups 1,7,0	
The order and implications of metals and carbon in the reactivity series	
ceramics, polymers and	
composites (qualitative)	
Hydrocarbons, Alcohols and Carboxylic acid	
The composition and structure	
of the Earth and its atmosphere	
Atmospheric Science	
The carbon cycle	
Surface properties of matter including Nanoparticles	

PHYSICS	
Calculation of fuel uses and costs in the domestic context	
Fuels and energy resources	
Conservation of Energy	
Energy changes and transfers in simple machines	
Heating and thermal equilibrium	
Energy changes within a system	

Quantitative relationship between speed, distance and time	

Interaction of and	
representation of forces between objects	
between objects	
Moments	
Measuring forces	
Forces and Matter	
Hooke's Law	
Work done and energy changes	
Non-contact forces	
Pressure in fluids	
Newton's laws of motion	
Transverse waves	
Sound	
Jound	
Electromagnetic Induction	
Ultrasound	
Light waves travelling through a	
vacuum	
Light and the EM Spectrum	
Reflection and refraction of	
light: The Human Eye:	
Coloured Light	
Magnetism and the motor	
effect	

Particle Model- 1.The Kinetic theory model	
Current electricity and simple circuits	
The definition and measurement of current, potential difference and resistance and the relationship between them.	
Static electricity	
Particle Model-2 Explaining the Gas Laws	
DC motors	
Melting, freezing, evaporation, sublimation, condensation, dissolving	
Brownian motion	

Gravity, weight and mass	
Energy in matter	
Seasons	
Structures in the universe	
Astronomy	
Radioactivity	
Types, Uses Dangers	