
PGCE Secondary Computing

University of Roehampton

2020-2021

Pre-course suggestions

I’m delighted that you’ve chosen to train at Roehampton as a computing teacher,
and am looking forward to working with you over the year ahead: on campus,
virtually and in school. You’ve a couple of months over the summer to prepare
for the course. I’ve made some suggestions below, but please don’t see these
as compulsory or limiting. Your future work as a computing teacher will draw
on three bodies of knowledge: your subject knowledge in computing, your skills
as a teacher and your ability to connect these so that the pupils in your care
develop their own capabilities in computing. The suggestions below address all
three of these areas.

Teaching

The DfE’s core content framework for initial teacher training details the minimum
expectation for the content of training courses., and also will form the basis
for your induction period after you achieve QTS. Look over the ‘Learn that. . . ’
statements, highlighting any that you are surprised by, disagree with, or would
like to discuss. The bibliography is excellent: I’d recommend starting with some
of the readings for ‘How pupils learn’ and ‘classroom practice’.

You’ll also become very familiar with the Teachers’ Standards, which form the
basis for the award of qualified teacher status (QTS). At this stage, read over
these, highlighting any that you currently have concerns about.

There are some excellent, accessible materials from the Chartered College of
Teaching, aimed at those joining the profession, in their Early Career Hub - the
College is free to join as a student.

The Education Endowment Foundation have reviewed the evidence base for
intervention strategies in schools - not all of these are relevant to computing
education, but their Teaching and Learning Toolkit provides a good route in
to some of the relevant research. You should consider how secondary schools
might make use of these approaches in teaching computing. If you’re interested

1

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/843676/Initial_teacher_training_core_content_framework.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/665522/Teachers_standard_information.pdf
https://earlycareer.chartered.college/
https://members.chartered.college/join/eligibility
https://educationendowmentfoundation.org.uk/evidence-summaries/teaching-learning-toolkit/


in engaging with the academic literature directly, try Muijs et al (2014)’s wide
ranging review as a starting place.

Rosenshine’s Principles of Instruction have been adopted by many schools as a
basis for effective lesson design - whilst these are open to critique, you should
consider the relevance of these to your teaching of computing. Here’s Rosenshine’s
list:

• Begin a lesson with a short review of previous learning.
• Present new material in small steps with student practice after each step.
• Ask a large number of questions and check the responses of all students.
• Provide models.
• Guide student practice.
• Check for student understanding.
• Obtain a high success rate.
• Provide scaffolds for difficult tasks.
• Require and monitor independent practice.
• Engage students in weekly and monthly review.

Much of our current thinking about effective teaching and learning is based on
psychology and cognitive science. I think Didau and Rose’s (2016) What Every
Teacher Needs to Know about Pyschology is a good general introduction, and is
currently available as part of Amazon’s Kindle Unlimited subscription service.

During the lockdown, ResearchEd organised a programme of daily online CPD
for teachers - there’s a huge amount of content here, and again I think you’d
need to be quite critical in making use of this.

To keep up to date with what’s happening, read the TES, Schools Week and the
education coverage in the Guardian.

Computing

Your subject knowledge for computer science, information technology and digital
literacy is crucial for your impact as a teacher of secondary computing and this
summer provides an excellent opportunity to develop this as far as you can.
Programming is the most significant element of the national curriculum and the
GCSE and A Level exam specifications, and this should be your focus.

Python has, for good or ill, become the language of choice for most secondary
computing, so developing your fluency in Python coding is probably the most
useful thing to do. There are some excellent online resources for doing so.
Depending on your own level of expertise, you might find one or more of these
helpful:

• Runestone Interactive: How to think like a computer scientist
• Runestone Interactive: Problem solving with algorithms and data struc-

tures using Python

2

https://eprints.soton.ac.uk/362878/2/SOA%2520TEACHER%2520EFFECTIVENESS%2520SESI.pdf
https://www.aft.org/sites/default/files/periodicals/Rosenshine.pdf
https://www.amazon.co.uk/Every-Teacher-Needs-About-Psychology/dp/1909717851
https://www.amazon.co.uk/Every-Teacher-Needs-About-Psychology/dp/1909717851
https://researched.org.uk/researched-home-2020/
https://www.tes.com/news
https://schoolsweek.co.uk/
https://www.theguardian.com/education/schools
https://www.theguardian.com/education/schools
https://www.python.org/
https://runestone.academy/runestone/books/published/thinkcspy/index.html
https://runestone.academy/runestone/books/published/pythonds/index.html
https://runestone.academy/runestone/books/published/pythonds/index.html


• Datacamp: LearnPython
• Python for you and me

Rather than working through excellent resources such as these, you may find it
more engaging to have a go at actually programming something, and at the least
you should be able to compare and contrast your experience of learning though
working through tutorials with that of solving problems or working on projects.

A great source for programming challenges or problems is Project Euler. A few
of these are mirrored in the rather good set of programming challenges made
available by OCR. You should have a go at some of these, from either set.

If you’re interested in object oriented programming (and if you’re going to teach
at A Level, you should be), Python’s game library, Pygame, is a good, motivating
place to start, perhaps using the PythonProgramming tutorial.

An alternative is Processing, which is Java based, although there’s a Python
syntax version available, but the most interesting work at the moment is done
using the online JavaScript version, p5.js. Daniel Shiffman has produced excellent
resources for Proecessing and p5.js, including some very engaging video tutorials
for his Coding Train channel on YouTube, and an in depth exploration of creating
a physics engine in The Nature of Code. For p5.js, New York City CS4All have
an excellent computational media course for high schoolers.

If you’ve never explored a block-based (rather than text-based) programming
language, you really should do so. MIT’s Scratch is hugely popular in primary
computing education, and is often used for introductory work in Year 7, and
sometimes Year 8. One of the best aspects of Scratch is that young programmers
routinely share their work with one another through Scratch’s online community
and are encouraged to read and remix others’ code in their own projects. Have
a look at what young programmers are capable of outside the formality of
school, perhaps leaving constructive comments on some of the projects you
explore. UCBerkely’s Snap! deserves to be better known and used: it extends
Scratch’s block based programming by adding in the implementation of some
more sophisticated programming concepts. Modrow’s (2018) Computer Science
with Snap! covers a lot more CS than we would in secondary school, and begins
with a relevant example of the spread of an epidemic. . .

More generally, there’s excellent support for developing your subject knowledge
for the GCSE and A Level specifications from the National Centre for Computing
Education (‘Teach Computing’), through their Isaac Computer Science materials
and their Future Learn courses.

The wide applicability of ‘computational thinking’ has been used to justify the
inclusion of computer science and programming in the curriculum. Whilst there
are many ways in which programming can be applied to solve problems in and
beyond other academic disciplines, there is rather less evidence that the ideas and
approaches of computer science transfer comfortably to other domains. You’ll
write about how computational thinking should be taught and assessed for one of

3

https://www.learnpython.org/
https://pymbook.readthedocs.io/en/latest/index.html
https://projecteuler.net/archives
https://www.ocr.org.uk/Images/260930-coding-challenges-booklet.pdf
https://www.ocr.org.uk/Images/260930-coding-challenges-booklet.pdf
https://www.pygame.org/news
https://pythonprogramming.net/object-oriented-programming-introduction-intermediate-python-tutorial/
https://processing.org/
https://p5js.org/
https://www.youtube.com/channel/UCvjgXvBlbQiydffZU7m1_aw
https://natureofcode.com/book/introduction/
https://nycdoe-cs4all.github.io/
https://scratch.mit.edu/
https://snap.berkeley.edu/
http://ddi-mod.uni-goettingen.de/ComputerScienceWithSnap.pdf
http://ddi-mod.uni-goettingen.de/ComputerScienceWithSnap.pdf
https://isaaccomputerscience.org/topics
https://teachcomputing.org/courses?utf8=%E2%9C%93&level=Key+stage+4&location=Online&topic=&certificate=cs-accelerator#filter-results


the PGCE assignments, but for now I’d recommend reading Tedre and Denning
(2016) The long quest for computational thinking, which is the set pre-course
reading, and perhaps Jeanette Wing’s (2006) CACM article ‘Computational
Thinking’, which is widely credited with coining the term.

The computing curriculum for English schools

The national curriculum programmes of study for computing are admirably
brief. They set out the scope of what pupils should be taught, but leave the
details of implementation and assessment to individual schools or teachers. You
should be aware that its only local authority schools that are legally required
to follow the national curriculum, and that at the time of writing we anticipate
that this may well be disapplied to facilitate catching up in English and maths
post-lockdown. It’s worth mentioning here that the national curriculum subject,
computing, encompasses computer science (foundations), information technology
(applications) and digital literacy (implications) - there’s more to computing
than computer science, and there’s more to computer science than coding. I
wrote a guide to the Key Stage 3 programme of study for the BCS/CAS, which
may be of interest.

Whilst computing is a national curriculum subject at Key Stage 4, evidence
suggests its rarely treated as such. An increasing minority of pupils are entered
for the GCSE in computer science, with around 90% of these following OCR’s
specification (2021 version, 2022 version). There is some controversy over the
place of practical programming here: for 2021 entries, schools certify that pupils
have spent at least 20 hours on a programming project, although this does not
contribute to their overall grade; from 2022 entries onwards, programming will
be examined by OCR through a written exam, with schools certifying that pupils
will have had the opportunity to engage in unspecified practical programming
as part of the course.

There are relatively few entries for computer science A Level, although the
exam specifications here are engaging and rigorous. In my view, AQA has the
edge, in part because it includes some functional programming and data science.
There’s much scope here for ambitious and well-prepared students to develop
outstanding, independent project work that would stand them in very good
stead for admission to university CS degrees.

Even before the development of the computing programmes of study began, the
DfE commissioned an expert group to draw up recommendations for subject
knowledge requirements for those seeking to train as computer science teachers.
These formed the basis of the audit you undertook prior to your interview,
and you’d be wise to spend time addressing any areas where you still feel your
expertise may be lacking.

4

http://denninginstitute.com/pjd/PUBS/long-quest-ct.pdf
https://dl.acm.org/doi/pdf/10.1145/1118178.1118215
https://dl.acm.org/doi/pdf/10.1145/1118178.1118215
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study
http://bit.ly/qsks3
%5Bhttps://www.ocr.org.uk/Images/225975-specification-accredited-gcse-computer-science-j276.pdf%5D(https://www.ocr.org.uk/Images/225975-specification-accredited-gcse-computer-science-j276.pdf)
%5Bhttps://www.ocr.org.uk/Images/558027-specification-gcse-computer-science-j277.pdf%5D(https://www.ocr.org.uk/Images/558027-specification-gcse-computer-science-j277.pdf)
%5Bhttps://www.ocr.org.uk/Images/553740-programming-project-tasks-june-2020-and-june-2021.pdf%5D(https://www.ocr.org.uk/Images/553740-programming-project-tasks-june-2020-and-june-2021.pdf)
%5Bhttps://filestore.aqa.org.uk/resources/computing/specifications/AQA-7516-7517-SP-2015.PDF%5D(https://filestore.aqa.org.uk/resources/computing/specifications/AQA-7516-7517-SP-2015.PDF)
https://dera.ioe.ac.uk/15780/1/subject%20knowledge%20requirements%20for%20entry%20into%20cs%20teacher%20training.pdf
https://dera.ioe.ac.uk/15780/1/subject%20knowledge%20requirements%20for%20entry%20into%20cs%20teacher%20training.pdf


Teaching computing

Much of the taught component of your PGCE will focus on approaches to
planning, teaching and assessing computing (or your intent, implementation and
impact as Ofsted now characterise these). For now, let me point you in the
direction of some research-informed frameworks for effective CS teaching:

• Shuchi Grover’s (2016) teaching tips (p7)
• Paul Curzon on learning to learn to program
• Neil Brown and Greg Wilson (2018) Ten quick tips for teaching program-

ming.
• Colleen Lewis CSTeachingTips website.
• Example principles and approaches from Teach Computing

What common ground do you notice? Are there significant differences between
these lists? What would explain that?

If you’d like to read more about the teaching of programming (and other aspects
of computing), I’d recommend these three books as a starting point:

• Guzdial, M., 2015. Learner-centered design of computing education: Re-
search on computing for everyone. Synthesis Lectures on Human-Centered
Informatics.

• Lau, W., 2017. Teaching Computing in Secondary Schools: A Practical
Handbook. Routledge.

• Sentance, S., Barendsen, E. and Schulte, C. eds., 2018. Computer Science
Education: Perspectives on Teaching and learning in school. Bloomsbury
Publishing.

Do also engage with the professional community of computing teachers. As a
minimum, join Computing At School, our free subject association, itself part of
the BCS, the Chartered Institute for IT. Online communities include #caschat
on Twitter, Tuesday evenings 8pm - 9pm, term time; many Facebook groups,
including ‘ICT and Computing Teachers’ and a CS Educators StackExchange.

Academic writing

For the academic component of your PGCE you’ll need to write three essays.
We’ll cover the requirements for these in detail as part of the course, but you
might like to spend some time over the summer on developing your writing. I’d
advise you to avoid an overly ‘academic’ style, aiming instead for clear, precise
prose. Success in ‘academic’ writing is as much about the reading and the
thinking that comes before the writing - the more you read, and the more you
think about what you read, the better your writing will be. Good academic
writing has much in common with good programming:

• You should start with a clear understanding of what you want to achieve.

5

https://community.computingatschool.org.uk/files/7081/original.pdf
%5Bhttps://teachinglondoncomputing.org/learning-to-learn-to-program/%5D(https://teachinglondoncomputing.org/learning-to-learn-to-program/)
%5Bhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5886386/%5D(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5886386/)
%5Bhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5886386/%5D(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5886386/)
%5Bhttps://www.csteachingtips.org/%5D(https://www.csteachingtips.org/)
%5Bhttps://blog.teachcomputing.org/teach-computing-our-focus-on-pedagogy/%5D(https://blog.teachcomputing.org/teach-computing-our-focus-on-pedagogy/)
https://www.computingatschool.org.uk/
https://www.bcs.org/
https://twitter.com/search?q=%23caschat&src=typed_query
https://www.facebook.com/groups/ict.computing/
https://cseducators.stackexchange.com/


• You should have a plan, both overall and at the detail level of sections and
paragraphs.

• Manage complexity: focus on what matters, and recognise the levels of
detail encompassed by sections, paragraphs and sentences.

• Syntax matters, but semantics matters more.
• Test frequently - check that your argument makes sense, is logical and

supported by evidence.
• Explain what you’re doing.
• You must acknowledges the source of ideas and text.
• As the Zen of Python has it, ‘Simple is better than complex. Complex is

better than complicated.’

I’m sure there are other parallels, and I now appear to have contradicted what I
wrote above about limited evidence for the transfer of computational thinking.

When you’re here, you’ll have access to good support from the University’s
academic achievement team. They recommend Gillett, Hammond and Martala’s
(2009) Inside Track to Successful Academic Writing.

Technology

Let me conclude with some suggestions for particular technologies which you
should be able to draw on in your study and your work as a teacher.

• Screen recording - we’ve come to recognise how useful it is to record a
presentation, software demonstrations or a programming example. Win-
dows and MacOS have built in screen recorders, and their are online tools
available, such as Screencastify.

• Note taking software. Microsoft OneNote is very popular in schools, and
can be used as a class. Others are happy with well organised documents
in Google Apps.

• Quizzes. It’s really useful to be able to create interactive, self-marking
quizzes for pupils, for assessment and to help them to remember what
they’ve been taught. I like Google Forms running in quiz mode, but Kahoot
is very popular in schools. You might also explore Project Quantum’s
computing questions available in Diagnostic Questions.

• PDF annotation. You’ll find yourself reading lots of PDFs - annotating
these online is much better than printing them off! Mendeley is good, and
also helps with bibliography management.

• Online IDE. It’s useful to be able to write and run code online, without
having to install anything locally. repl.it is very popular and has a good set
of features. https://trinket.io/ is a little simpler. I’ve a personal preference
for Jupyter Notebooks, using Google’s Colab system.

• Blog. You’ll be expected to maintain a reflective portfolio of evidence of
your learning on the course and your work on the course: we’re likely to
use a Wordpress-based blog for this.

6

https://legacy.python.org/dev/peps/pep-0020/
https://www.amazon.co.uk/Inside-Track-Successful-Academic-Writing/dp/0273721712
https://www.screencastify.com/
https://www.microsoft.com/en-gb/microsoft-365/onenote/digital-note-taking-app?rtc=1
https://support.google.com/docs/answer/7032287?hl=en-GB
https://kahoot.com/
https://diagnosticquestions.com/Questions?CurrentSubjectId=1677&OrderBy=Newest&IsByStudent=False
https://diagnosticquestions.com/Questions?CurrentSubjectId=1677&OrderBy=Newest&IsByStudent=False
https://www.mendeley.com/?interaction_required=true
https://repl.it/
https://trinket.io/
https://jupyter.org/
https://colab.research.google.com/
https://wordpress.com/


• Online office software. You’ll also need to be able to work collaboratively
on documents and presentations - Google Apps and Microsoft 365 are both
very good: the University provides Microsoft 365.

• Email and Calendar. The University’s Outlook provision should suffice
for this - install the mobile app too, and use it to manage your timetable,
lectures, assessment deadlines and social life.

I’m taking some leave over the summer, including some time beyond the reach
of the net, but please do get in touch if you’d like to discuss any of the above, or
have any other questions or concerns about starting the course.

Miles Berry

m.berry@roehampton.ac.uk

@mberry

07779 628656

7

https://gsuite.google.com/
https://www.microsoft.com/en-us/microsoft-365
https://www.microsoft.com/en/microsoft-365/outlook/email-and-calendar-software-microsoft-outlook

	Pre-course suggestions
	Teaching
	Computing
	The computing curriculum for English schools
	Teaching computing
	Academic writing
	Technology


